If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+63x=0
a = 14; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·14·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*14}=\frac{-126}{28} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*14}=\frac{0}{28} =0 $
| 12x-16=7x-8 | | y=-4/5=-2/5 | | 11x-138=7x-46 | | 4x+1.50=33.50 | | -2x-6+(-x/4)-3=90 | | 3x+6x-5=0 | | -3=x+7/3 | | 6x-26+2x=8 | | 14x^2=-63x | | -8x÷2=11 | | 3(4+2y)-10y=8 | | u/4-1.5=-7.9 | | 121/2(-4+6x)=131/3x+232/3(x+9) | | H3x-5)+(7x-2)+x=180 | | 12+6y-10y=8 | | 6p-8=58 | | 4x+180=132 | | 6(x+6)=-2(x-2) | | (2x+18)+55+(4x+11)=180 | | 180+132=4x | | 7=b+116 | | 11=3/5(6x10) | | -11=5+3x | | 6(2x+2)=6x+30 | | 4x(26)=30 | | 0.5x=24.4 | | –6n−7=–7−6n | | 46-w=160 | | 25=-12a+49 | | 78.9183x+80.9169=79.904 | | -9x+1=9x+2 | | 11=3/5(6x=10) |